The Leucokinin Pathway and Its Neurons Regulate Meal Size in Drosophila
نویسندگان
چکیده
BACKGROUND Total food intake is a function of meal size and meal frequency, and adjustments to these parameters allow animals to maintain a stable energy balance in changing environmental conditions. The physiological mechanisms that regulate meal size have been studied in blowflies but have not been previously examined in Drosophila. RESULTS Here we show that mutations in the leucokinin neuropeptide (leuc) and leucokinin receptor (lkr) genes cause phenotypes in which Drosophila adults have an increase in meal size and a compensatory reduction in meal frequency. Because mutant flies take larger but fewer meals, their caloric intake is the same as that of wild-type flies. The expression patterns of the leuc and lkr genes identify small groups of brain neurons that regulate this behavior. Leuc-containing presynaptic terminals are found close to Lkr neurons in the brain and ventral ganglia, suggesting that they deliver Leuc peptide to these neurons. Lkr neurons innervate the foregut. Flies in which Leuc or Lkr neurons are ablated have defects identical to those of leucokinin pathway mutants. CONCLUSIONS Our data suggest that the increase in meal size in leuc and lkr mutants is due to a meal termination defect, perhaps arising from impaired communication of gut distension signals to the brain. Leucokinin and the leucokinin receptor are homologous to vertebrate tachykinin and its receptor, and injection of tachykinins reduces food consumption. Our results suggest that the roles of the tachykinin system in regulating food intake might be evolutionarily conserved between insects and vertebrates.
منابع مشابه
Postprandial sleep mechanics in Drosophila
Food consumption is thought to induce sleepiness. However, little is known about how postprandial sleep is regulated. Here, we simultaneously measured sleep and food intake of individual flies and found a transient rise in sleep following meals. Depending on the amount consumed, the effect ranged from slightly arousing to strongly sleep inducing. Postprandial sleep was positively correlated wit...
متن کاملSerotonin and downstream leucokinin neurons modulate larval turning behavior in Drosophila.
Serotonin (5-HT) is known to modulate motor outputs in a variety of animal behaviors. However, the downstream neural pathways of 5-HT remain poorly understood. We studied the role of 5-HT in directional change, or turning, behavior of fruit fly (Drosophila melanogaster) larvae. We analyzed light- and touch-induced turning and found that turning is a combination of three components: bending, ret...
متن کاملSystematic G-protein-coupled receptor analysis in Drosophila melanogaster identifies a leucokinin receptor with novel roles.
Leucokinins are insect neuropeptides that stimulate hindgut motility and renal fluid secretion. Drosophila has a single leucokinin gene, pp, encoding the longest known leucokinin, Drosokinin. To identify its receptor, a genome-wide scan for G-protein-coupled receptors was performed in silico and candidate receptors identified by similarity to known tachykinin receptors. The deduced peptides wer...
متن کاملFunctional characterisation of the Anopheles leucokinins and their cognate G-protein coupled receptor.
Identification of the Anopheles gambiae leucokinin gene from the completed A. gambiae genome revealed that this insect species contains three leucokinin peptides, named Anopheles leucokinin I-III. These peptides are similar to those identified in two other mosquito species, Aedes aegypti and Culex salinarius. Additionally, Anopheles leucokinin I displays sequence similarity to Drosophila melano...
متن کاملThe Hippo Pathway Regulates Neuroblasts and Brain Size in Drosophila melanogaster
A key question in developmental neurobiology is how neural stem cells regulate their proliferative potential and cellular diversity and thus specify the overall size of the brain. Drosophila melanogaster neural stem cells (neuroblasts) are known to regulate their ability to self-renew by asymmetric cell division and produce different types of neurons and glia through sequential expression of te...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 20 شماره
صفحات -
تاریخ انتشار 2010